

基于地面激光强度校正数据的单木枝叶分离

孙圆^{1,2},林秀云¹,熊金鑫^{3*},任国婧¹

¹南京林业大学林学院,江苏南京 210037; ²南京林业大学南方现代林业协同创新中心,江苏南京 210037; ³南京六合平山林场发展有限公司,江苏南京 211500

摘要由于受到角度、距离等因素影响,同种地物反射的激光强度数据存在较大的偏差,需要建立校正模型使强度数据能准确反映地物信息,并快速提取。从激光雷达测距方程出发,设计校正实验,运用多项式模型拟合强度数据校正方程,通过定义其标准值,改正距离和高度影响下的反射强度。采用阈值法和随机森林法进行立木枝叶分离。利用二次多项式对七类材质分别进行校正,校正后各材质强度数据级差均小于0.1,不受距离、高度影响,可以区分主干和叶片;活立木强度数据经过校正可以得到枝叶分离的阈值;随机森林法的最终分类效果较好,两树种叶模型校正分类精度分别为91.5%和84.3%。本研究建立的校正模型方法,对自然漫反射目标物的激光强度数据能够进行较为精确的校正,选用的自然立木验证实验校正成功,为进一步进行立木的枝叶分离提供了可能性。 关键词 测量;激光反射率;强度改正模型;地面三维激光扫描;单站扫描;枝叶分离

中图分类号 S771 文献标志码 A

1 引 言

使用地面三维激光扫描^[1](TLS)不仅可以直接 测量得到目标物的三维模型^[2],还能获得地物反射 强度数据^[3]。强度数据可应用于不同测站所得到的 点云数据的配准和滤波^[4],也可通过强度数据或将 强度数据与点云坐标数据结合以达到对目标物提 取^[5]与分类的目的^[6],为后续叶面积计算^[7]和生物 量估算^[8]提供基础。但强度数据会受到目标反射率 的影响,扫描距离^[9]、入射角^[10]和大气衰减效应等 因素使得目标反射率产生偏差,导致地物分类效果 较差。校正这些系统变量,使得同种地物反射率值 不随扫描距离或地物高度变化,从而达到激光强度 直接反映目标真实反射率的目的^[3-5]。

目前激光雷达绝大部分的应用都集中在利用其 几何信息,而其强度信息受制于硬件(光源、探测器 等)原因,很难进行绝对校正,必须结合硬件特点和 探测物体本身的特点来校正。如 Fang 等^[9]使用入 doi: 10.3788/CJL202148.0104001

射角校正方法,对来自白墙和敦煌莫高窟的 TLS 点 云数据进行了实际强度校正,分析了激光雷达近距 离效应并概述了进一步的研究。夏国芳等^[11]设计 了两种不同材质的激光入射角度与扫描获取的点云 反射强度的实验,得到了实验条件下激光的入射角 度与点云的反射强度之间的变化关系和数学模型。 还有单独针对扫描距离进行校正的研究,通常情况 下,距离越大,能量损失越大,反射强度越小。Tan 等^[10]使用不同反射强度值的漫射目标,针对不同扫 描仪,设计了两组实验以估计参数并进行了验证。

对激光强度值进行校正处理的方法主要包括: 1)基于理论的辐射校正模型,但是需要较多参数,实施起来有一定的难度;2)归一化校正模型,将激光传输距离、大气衰减二者的影响平均化,以达到回波强度校正的目的。归一化校正模型相较于辐射校正模型更加易于实现且结果具有参考意义,因此得到了 广泛应用。Carrea等^[12]将 LiDAR 的经典雷达方程 与 Oren-Nayar 模型的双向反射率分布函数结合在

收稿日期: 2020-07-10;修回日期: 2020-08-13;录用日期: 2020-08-24

基金项目:江苏省自然科学基金面上项目(BK20191388)、江苏省普通高校学术学位研究生科研创新计划项目(KYCX20_0900)、 南京林业大学大创项目(2020NFUSPITP0235)

^{*}E-mail: sunyuan1123@126.com

一起,校正后,强度值与材料的固有反射强度成比例,并且与范围、入射角和扫描的表面几何形状无关,校正后的强度值显著改善了材料差异。程小龙等^[13]提出了一种新的方法,利用高斯混合模型的直方图匹配,对获得的多站点云反射强度值进行校正。 Höfle 等^[14]通过数值驱动和模型驱动两种方法分别对机载激光雷达强度数据进行校正,校正结果使实验区域点云整体反射强度更加均匀。现有的校正模型针对相应的实验设备和实验地物,而经过校正的反射强度数据,其后续的应用方向还值得进一步分析。

本文从激光雷达散射方程^[13]出发,利用多回波 地面激光单站扫描得到的点云强度数据建立校正模 型,固定其他因素对激光强度的影响,为每一个确定 变量分别进行目标物激光强度数据校正^[15],从而更 好地实现激光强度对目标结构、材质、属性的提取和 反演,实现点云分类与目标特征提取的精细化,实现 对不同目标地物的探测与识别,满足激光探测领域 对获取高精度、高准确度目标信息的要求。

2 方 法

2.1 TLS 激光强度校正原理

TLS 扫描过程中,扫描仪与被测目标构成的场 景如图 1 所示。激光强度受到目标反射强度的影 响,而距离、入射角和大气衰减效应等因素又会使目 标反射强度产生偏差。以激光雷达测距方程为基 础,根据朗伯体散射模型,激光方程可简化为^[16]

Fig. 1 Diagram of incidence angle effect converted to height effect

$$P_{\rm r} = \frac{P_{\rm t} D_{\rm r}^2 \rho \cos \theta}{4R^2} \eta_{\rm sys} \eta_{\rm atm} \,, \tag{1}$$

式中: P_{r} 为接收激光功率; P_{t} 为发射激光功率; D_{r} 为接收机孔径;R为扫描仪中心到扫描目标点距离; η_{atm} 为大气传输系数; η_{sys} 为扫描系统传输系数; ρ

第 48 卷 第 1 期/2021 年 1 月/中国激光

为目标反射率;θ为入射激光与目标表面的法向量 之间的夹角,即为激光入射角。与系统相关的参数 都可以作为常数,并忽略大气传输系数,则(1)式简 化为

$$P_{\rm r} = \frac{C \cdot \rho \cdot \cos \theta}{R^2} \,. \tag{2}$$

激光强度值 I 与回波接收功率 P_r 之间必定存 在函数关系,假设扫描系统对接收功率线性放大,激 光强度值 $I \propto P_r$,则改正后的激光强度值 I_s 为

$$I_{\rm s} \propto \rho \propto \frac{I \cdot R^2}{\cos \theta} \,. \tag{3}$$

将(3)式总各变量分离,改正后的激光强度值 I_s 表示为目标反射率函数 F_1 、入射角余弦函数 F_2 以及距离函数 F_3 的乘积形式:

 $I_{\rm S} = F_1(\rho) \cdot F_2(\cos \theta) \cdot F_3(S) \, . \tag{4}$

激光入射角可以通过三角函数转换为更为直观 的高度变量,如图 1 所示。激光强度数据 I 可表示 为目标反射率函数 F_1 、高度函数 F_2 以及距离函数 F_3 的乘积形式

$$I_{\rm S} = F_1(\rho) \cdot F_2(H) \cdot F_3(S) \,. \tag{5}$$

根据 Weierstrass 定理^[17]:设 f(x)在有界闭区 间 [a,b]上连续,则对任意 $\epsilon > 0$,恒存在多项式 p(x),使得对 [a,b]上一切x一致的有 $|f(x)-p(x)| < \epsilon, a \leq x \leq b$ 。运用多项式级数进 行逼近,拟合激光强度数据与目标反射率 ρ 之间的 关系,在接收功率无法求得的情况下,可通过将测量 高度 H 与激光测距值 S 的乘积进行组合,来实现对 目标反射率的校正。利用多项式模型建立激光强度 数据与新变量之间的模型关系,改正后的激光强度 表示为^[18]

$$I_{\rm S} = I \cdot \sum_{i=0}^{N_1} (\alpha_i H^i) \cdot \sum_{i=0}^{N_2} (\beta_i S^i) , \quad (6)$$

式中: N_1 、 N_2 为多项式次数; α_i 、 β_i 为多项式系数。

由此可见,理论上,通过校正高度效应和距离效 应即可得到更为贴近真实反射率的强度信息。

2.2 强度数据校正实验设计

本文采用 RIEGL VZ-400i 地面三维激光扫描仪, 该设备具有回波数字化、实时波形处理及多波束收发 处理等技术,可以接受无穷次回波,扫描角度为100° (垂直)×360°(水平),扫描速率为500000 point/s,扫 描精度为5 mm/100 m,激光波长为近红外。将7 种漫反射目标物固定在室内的墙面上,如图2所示 (从左到右分别为无患子叶反面、无患子叶正面、无 患子枝、白纸、银杏枝、银杏叶反面、银杏叶正面)。 根据目标物到地面的不同距离(分别为1.2,1.7,

- Fig. 2 Schematic of scanning experiment. (a) Laboratory calibration experiment; (b) outdoor calibration experiment
- 2.2,2.7,3.2,3.7 m)设置不同高度的目标参照组。 固定到目标物的距离,可得到不同高度的漫反 射目标物的强度信息,以此考察高度效应的影响情

况并对高度效应进行校正。其中白纸作为校正参

考,正对扫描仪。

为排除多站点拼接数据冗余影响,本实验对目标物采用单站扫描,即设置地面三维激光扫描仪到墙面的距离分别为2、3、4、5、6、7 m 等 6 个单站点,将仪器(高为0.2 m)架在桌面(高为1 m)上,正对目标物进行扫描,如图2(a)所示。采用同样的设备扫描活立木,分别在有叶、叶黄和落叶三个时间段获取单站全立木点云数据,站点位置固定,扫描方式统一。本实验获取了南京林业大学校园内银杏行道树、无患子行道树各5 株。扫描场景如图2(b)所示。

由于各材质均贴在墙面上,因此激光入射角和 激光与墙面的扫描角^[19]一致,但各材质之间依然存 在不可忽略的距离变化,导致仪器与非白纸材质的 真实距离并非仪器到白纸的距离。故根据激光特 性、扫描方式及三角函数,将非白纸材质与白纸的距 离效应转化成与仪器的高度差,以便后续建模计算 及校正结果分析。

如图 3 所示,保持坐标为(0,*y*,*z*)的被测目标 物的 *x* 变量不变,始终为 0,将其 *y* 变量消除转化为 *z*,在图 3(a)中, $d = \sqrt{x^2 + z^2}$,实际距离 *S* = $\sqrt{y^2 + d^2}$ 。保持扫描仪激光打到被测目标物并返 回的真实距离不变,故图 3(b)中的实际距离 *S* = $\sqrt{y^2 + d^2}$, $z' = \sqrt{S^2 - x^2} = \sqrt{y^2 + z^2}$ 。

图 3 消除材质间距离误差示意图

2.3 基于多项式的校正模型

对 $F_2(H)$ 进行参数估计,当距离一定时, $K_1 = F_1(\rho) \cdot F_3(S)$ 可作为常数,(6)式可以改写为

$$I_{s} + e_{1} = K_{1} \cdot \sum_{i=0}^{N_{1}} (\beta_{i} \cdot H^{i}) .$$
(7)
同理,当高度一定时,(6)式可以改写为

$$I_{\rm S} + e_2 = K_2 \cdot \sum_{i=0}^{N_2} (\alpha_i \cdot S^i) , \qquad (8)$$

式中: e_1 、 e_2 为噪点误差。

根据残差模 R 选取最佳模拟多项式,其值越小,则模型效果越好,计算公式为

$$R = \sqrt{\sum_{j=0}^{N_j} \left[(A_i - B_i)^2 \right]}, \qquad (9)$$

式中:B为模拟值;A为原值。

本文以距离最远及高度最小为校正的标准值 (其值更为接近反射率的真实值),将强度数据的标 准值减去高度校正的模拟值得到差值,再将差值以

第48卷第1期/2021年1月/中国激光

加法形式填补到原始数据中,即可得到高度效应的 校正结果,同理可以得到距离效应的校正结果。将 高度改正结果与距离改正结果相乘,即为模型的最 终校正结果。

2.4 立木枝叶分离

2.4.1 阈值法

对立木的枝叶分离可以认为是对点云的二值化 分割,其关键是确定阈值,不同的阈值会对枝叶分离 产生不同的效果,公式为

$$C = \begin{cases} 1, & I < k \\ 2, & I \ge k \end{cases}, \tag{10}$$

式中:C 为类别,1 对应叶片,2 对应枝杆;I 为点云 反射强度;k 为阈值

对室外立木分别建立叶模型和杆模型后,分析 对比两个树种点云分布特征,选定阈值进行分类。 运用阈值对不同高度手动选取的点云进行分类,最 后对比实际类别计算判别精度。

2.4.2 随机森林法

立木枝叶分离采用点云 RGB 信息和校正后的 强度数据建立随机森林模型进行分类。随机森林法 是一种包含多个决策树的分类器,其输出的类别是 由每棵树输出的类别的众数决定,由不同的树枝决 定其预测的权值。和其他分类模型相比,该模型具 有简单易理解、短时间能够处理大量数据等优点。 从训练样本中以随机有放回抽样的方式,取样 *k* 次,形成一个训练数据集,并用未抽到的样本作为预 测,评估其精度。对于树上的每一个节点,随机选择 *n* 个特征,每棵决策树上每个节点的投票都是基于 这些特征确定的。根据这些特征,计算其最佳的分 裂方式。最后测试数据,按照每个树枝权重决定分 类结果。

本文基于点云的 RGB 和反射强度这 4 个特征 进行分类,分别从两个树种的高中低三个高度选取 叶片和树干点云数据,导出时附带 RGB 信息用以辅 助分类,去除未着色和黑色点云。

验证数据采用十折交叉验证。把数据分成10份,从第1份开始作为测试数据集,其他作为训练数据集,一直到第10份结束,选择如下指标来验证模型的能力。

1) 平均绝对误差(MAE)

$$R_{\text{MAE}} = \frac{1}{n} \sum |x_{i} - m(x)|, \qquad (11)$$

式中:x 是单个观测值和m(x)算术平均值的偏差。

2) 均方根误差(RMSE)

$$R_{\rm RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{x}_i)^2}{n}} \,. \tag{12}$$

3) 相对误差(RE)

$$R_{\rm RE} = \sum_{i=1}^{n} \frac{|x_i - \hat{x}|}{x_i} \times 100\% \,. \tag{13}$$

4) 相对均方根误差(RRSE)

$$R_{\text{RRSE}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} \left(\frac{|x_i - \hat{x}|^2}{x_i} \right)}, \quad (14)$$

式中: \hat{x}_i 为模型预测值; x_i 为观测真实值;i 表示 次数。

平均绝对误差和均方根误差用来衡量分类器 预测值和实际结果的差异,其值越小越好。相对 误差能反映测量的可信度,其值越低,模型精度 越高。有时绝对误差不能体现误差的真实大小, 而相对误差能通过误差占真值的比重来反映误差 大小。

3 结果与分析

3.1 高度与距离校正

在统一距离情况下进行高度校正,多个确定距 离的多项式次数 N_2 与残差模的关系如图 5(a)所 示。同时考虑多项式模型的拟合效果和简便性,当 $N_2=1$ 或 $N_2=2$ 时,残差模值较大,不理想;当 $N_2=4$ 时,残差模值较小,但四次方多项式计算过 于繁琐。因此选取 $N_2=3$ 。

以白纸点云原始强度数据为例,根据最小二 乘平差进行点云强度数据与高度的多项式模拟, 选取三次项方程为最优方程,其中当距离 S=2时,可得[$\rho_1, \rho_2, \rho_3, \rho_4$]^T = [$K_2\alpha_0, K_2\alpha_1, K_2\alpha_3, K_2\alpha_4$]^T = [0.038-0.110-0.152 0.806],同理可 得距离分别为 3、4、5、6、7 m时,对应高度的校正 模型系数。

同样,在统一高度情况下进行距离校正,为兼备 多项式模型的拟合效果和简便性,选取 $N_3 = 2$ [图 4(b)],采用白纸数据进行点云强度数据与距离 的多项式模拟,选取二项式的方程为最优模型,当 H=2.5时,可得[$\rho_1, \rho_2, \rho_3, \rho_4$]^T = [$K_3\beta_0, K_3\beta_1$, $K_3\beta_3$]^T = [-0.001 0.071 0.189]。同理可得其他 不同高度对于距离的校正模型系数。综合高度校正 和距离校正的参数估计结果,可得白纸最终模型如 表1所示。

第 48 卷 第 1 期/2021 年 1 月/中国激光

图 4 多项式次数 N2、N3 与残差模的关系。(a)多距离残差模;(b)多高度残差模

Fig. 4 Relationship between number of polynomials N_2 and N_3 and residual module. (a) Multi-distance residual module; (b) multi-height residual module

表1 白纸高度-距离校正模型

Table 1White paper height and distance correction model								
	S/m		2	3	4	5	6	7
Height	$\mathbf{L} = \mathbf{c} = \mathbf{C}^3$	p_1	0.038	0.038	0.021	0.013	0.010	0.006
model for	$I_{\rm S} = p_1 \cdot S + $	₱ 2	-0.110	-0.136	-0.083	-0.053	-0.032	-0.022
white	$p_2 \cdot S^2 +$	⊅ 3	-0.152	-0.040	-0.011	-0.005	-0.015	-0.019
paper	$p_3 \bullet S +$	⊅ 4	0.806	0.747	0.655	0.671	0.692	0.739
	p_{4}	R	0.028	0.019	0.025	0.007	0.004	0.005
D	H/m		0	0.5	1	1.5	2	2.5
Distance	$I = I I I^2$	p_{1}	0.017	0.014	0.004	0.001	0.002	-0.001
model for	$I_{s}-p_{1} \bullet H +$	₱ 2	-0.163	-0.125	-0.007	0.032	0.044	0.071
paper	$p_2 \bullet H +$	⊅ 3	1.064	0.929	0.572	0.394	0.281	0.189
Paper	<i>P</i> 3	R	0.028	0.049	0.017	0.026	0.030	0.032

3.2 校正模型分析

室内校正实验的其他材质校正方法与白纸类 似,表2为各个材质最终模型汇总。二次多项式通 常兼备简便与良好的模拟效果,使用的情况最多,其 次是三次多项式。而线性方程虽然计算过程简便但 往往拟合效果并不理想,所以一般不采用。

表 2 各材质残差模和多项式次方选择

Table 2 Selection of residual modules and polynomial dimensions of all materials

Species –		Residual module						D
		1	2	3	4	5	6	Power
	Height model for back of leaves	0.021	0.024	0.01	0.013	0.004	0.013	3
	Distance model for back of leaves	0.011	0.026	0.028	0.028	0.036	0.017	2
S1	Height model for front of leaves	0.047	0.028	0.015	0.015	0.017	0.016	2
Soapberry	Distance model for front of leaves	0.014	0.022	0.024	0.035	0.038	0.028	2
	Height model for branch	0.048	0.033	0.027	0.024	0.011	0.017	2
	Distance model for branch	0.009	0.018	0.019	0.006	0.046	0.064	3
	Height model for back of leaves	0.012	0.006	0.004	0.005	0.006	0.016	2
Ginkgo	Distance model for back of leaves	0.176	0.115	0.111	0.188	0.163	0.206	3
	Height model for front of leaves	0.004	0.007	0.005	0.011	0.012	0.010	4
	Distance model for front of leaves	0.010	0.010	0.013	0.010	0.006	0.009	2
	Height model for branch	0.032	0.041	0.019	0.019	0.017	0.008	2
	Distance model for branch	0.020	0.029	0.033	0.038	0.020	0.043	2

Front of ginkgo leaves

将高度模型结果与距离模型结果相乘,求取各 材质校正前后的数据情况,如表 3 所示,所有材质校 正后数据级差降低了一个数量级且在一个数值上下 较小的范围内波动。其中,银杏叶正面和银杏叶反面点云强度数据的校正效果是所有校正结果中级差最小的,分别为 0.005 和 0.007。

Table 3 Range before and after correction of each materials						
Species	Row data			Corrected data		
	Max	Min	Range	Max	Min	Range
Back of soapberry leaves	0.432	0.182	0.250	0.207	0.177	0.031
Front of soapberry leaves	0.425	0.200	0.224	0.193	0.140	0.053
Soapberry branch	0.505	0.188	0.317	0.222	0.175	0.046
White paper	0.800	0.334	0.466	0.578	0.510	0.068
Ginkgo branch	0.506	0.215	0.291	0.280	0.240	0.040
Back of ginkgo leaves	0.267	0.153	0.115	0.067	0.062	0.005

0.132

0.163

表 3 各个材质校正前后级差值

图 5 为校正前后 7 种材质反射强度对比图,经 过模型校正后各个材质的强度稳定在一个数值上下 波动,所建立的校正模型对各个材质的强度数据在

0.295

距离和高度上的校正效果较好,其中银杏叶和主干的校正效果最好,不同材质均得到了区分,同种材质 (叶片、主干)的强度差异得到了校正。

0.084

0.007

0.090

图 5 室内各材质校正前后对比图。(a)原始强度数据;(b)校正后强度数据

Fig. 5 Comparison before and after correction of each material indoor. (a) Original intensity data; (b) corrected intensity data

研究区内的 5 棵无患子和 5 棵银杏分别经过叶 和杆模型校正后,再分析立木校正前后点云反射强 度 的 特 征 变 化。图 6 分 别 以 其 中 一 棵 银 杏 [图 6(a)]和无患子[图 6(b)]为例,将点云按反射强 度所属区间归类,横轴 0~200 等份分别对应点云反 射强度 0~1,纵轴为该区间内点云数。且由于大于 40(反射强度大于 0.2)的点云数过少,故不显示。 图中无论是全回波还是单目标回波,银杏点云数在 各个反射强度区间上的数量差距很小,在接近峰值 处差距最大,都在 1000 以内;无患子全回波要比单 目标回波的点云数多,各反射强度区间差距很大,在 峰值周围的反射强度区间,差距大于10000。

银杏和无患子分别经过叶模型和杆模型校正 之后,反射强度都变小,且经过叶模型校正之后的 点云反射强度更小。其中银杏点云最多的反射强 度区间为35,即反射强度为0.175时的点云数量 最多。经过叶模型和杆模型校正后,数量最多的 立木点云反射强度为0.035和0.065。无患子点 云最多的反射强度区间为18,即反射强度为0.09 时的点云数量最多。同理经过叶模型和杆模型校 正后,数量最多的立木点云反射强度为0.05和 0.065。同时记录三条曲线交点。

第48卷第1期/2021年1月/中国激光

图 6 室外立木强度数据校正前后分布。(a)银杏;(b)无患子

Fig. 6 Distribution of outdoor standing trees intensity data before and after correction. (a) Ginkgo; (b) soapberry

Table 4 Distribution characteristics of point reflection intensity							
Species		Max			Intersect		
	Row data	Leave	Branch	Row-leave	Row-branch	Leave-branch	
	0.175	0.035	0.065	0.095	0.120	0.055	
	0.165	0.035	0.050	0.080	0.100	0.050	
Ginkgo	0.160	0.040	0.080	0.090	0.130	0.065	
	0.200	0.060	0.150	0.110	0.175	0.095	
	0.190	0.050	0.080	0.105	0.130	0.070	
	0.090	0.040	0.055	0.065	0.075	0.095	
	0.090	0.050	0.065	0.075	0.080	0.120	
Soapberry	0.090	0.030	0.055	0.135	0.075	0.095	
	0.090	0.030	0.050	0.045	0.075	0.100	
	0.115	0.065	0.055	0.075	0.090	0.115	

表 4 点云反射强度分布特征

3.3 立木校正枝叶分离

表 4 分别为银杏和无患子各 5 株的立木反射强 度区间内点云最多处的反射强度以及曲线交点处的 反射强度。点云反射强度经过校正之后,整体减小, 无患子原始反射强度峰值在 0.10 左右,远小于峰值在 0.17 的银杏反射强度,同一树种反射强度峰值和交点 几乎一致,银杏三条曲线交点分别为 0.90、0.12 和 0.06,而无患子三条曲线交点分别为 0.70、0.08 和 0.11。 3.3.1 阈值分割

通过固定阈值依靠反射强度将点云一分为二, 阈值来源于经过校正之后的最大点云反射强度和交 点,最终确定表5为银杏和无患子枝叶分离的阈值。 表 6 为分类结果,各分类方法的精度均低于 80%, 但相对于原始阈值分类精度最大提高了 62% ~ 83%(银杏叶模型对叶片和枝干的分类精度分别从 35.032%提高到 73.224%,37.406%提高到 75.780%)。总体来看,本实验的阈值枝叶分离精度 是银杏高于无患子。

表 5 枝叶分离阈值

Table 5 Thresh	nold for	leaf ai	nd branch	separation
----------------	----------	---------	-----------	------------

Model	Ginkgo	Soapberry
Row data	0.16	0.09
Leaves	0.04	0.05
Branch	0.07	0.07

表	6	各模型对枝叶的分类精度

Table 6 Classification accuracy of branches and leaves of each model
--

unit: ½

Model		Ginkgo		Soapberry		
Model	Row data	Leaves model	Branch model	Row data	Leaves model	Branch model
Leaves	35.032	73.224	49.461	32.414	72.812	52.330
Branch	37.406	75.780	46.084	28.103	55.091	46.488

3.3.2 随机森林模型分类

为了验证模型精度,采用十折交叉验证,各模型与RGB分类精度如表7所示。

表 7 两树种各模型分类精度

Table 7 Classification accuracy of species and models unit:							
Species	Accuracy of row data	Accuracy of leaves model	Accuracy of branch model				
Ginkgo	85.645	91.504	89.071				
Soapberry	83.333	84.323	83.592				

由于是手动选取的叶片和树干,所以从色彩上 很容易区分,所有的模型精度均高于 80%,但总体 来看,叶模型校正后的点云反射强度分类效果最好, 特别是银杏叶模型分类精度提高了 6.8%(从原有 的 85.645%提高到 91.504%)。因此,最终选用叶 模型校正两树种点云反射强度,叶模型校正后两树 种分类误差如表 8 所示。

表 8 叶模型分类误差 Table 8 Classification error of leaf model

Species	MAE	RMSE	RE	RRSE
Ginkgo	0.0388	0.1431	7.9065	28.883
Soapberry	0.1397	0.2685	28.7238	54.451

由表 8 可知,运用随机森林模型对银杏和无患 子枝叶进行分类的误差很小,银杏平均绝对误差只 有 0.04,比无患子分类的误差(0.14)更小,分类效 果更好。

4 结 论

根据所设计的实验获得单站地面激光强度数据 的校正模型,分别校正了距离和高度对多种材质的 影响。模型将不易测定的角度转换成了高度,建立 了一种新的基于多项式模型的 TLS 激光强度校正 方法。该模型只需确定各多项式次数与系数^[18],即 可为多回波地面激光扫描仪取得的地物强度数据进 行改正,进一步可用于其他地物的强度校正。由于 激光束与物体表面的相互作用是复杂的,室内实验 的校正模型在距离和高度上有一定限制,强度校正 的进一步研究应该集中在 TLS 的几何扫描上,特别 是扫描距离的影响与物体表面性质之间的关系^[10]。

本文所用单站扫描点云数据,在距离和高度上 能够得到确定的值,但为了得到被测物体的完整信 息需要增加站点,这时就需要对模型建立新的调整 系数。同时,RieglVZ400i系列扫描仪,还提供多回 波点云数据,从扫描机理上增加了点云密度和回波 效率^[15]。

经过叶模型和杆模型的强度数据校正,使得离 散分布的强度值出现了峰度、削度明显区别的特征 曲线,利用曲线焦点和大量数据实验,可以寻找更为 合适的划分区间,为不同树种的枝叶分离和树冠结构分析提供更好的模型。从分回波的点云强度上分 解地物特征,实现枝叶分离也是一个值得进一步研 究的课题。

林分空间分布的信息包含着立木结构中树冠结构信息^[20],枝叶分离的效果和意义直接影响着整体 生态系统的结构和功能的研究。经过该模型的校 正,不同地物(不同种立木的主干、叶)的强度数据得 到了分离,校正后数据级差明显变小且在一个数值 上下较小的范围内波动,采用随机森林模型的枝叶 分离精度最优达到 91.504%。对点云数据进行了 多树种分类,精度不到 90%^[21],如果增加校正后的 强度信息,分类精度有望继续提高。仅利用 TLS 测 量和适当的数据校正技术^[22],即可在空间上明确地 描述立木主干和树叶,该研究可以为航空激光雷达 测量以及其他光学地球观测系统的校准提供验证 基础。

参考文献

- [1] Hua X H, Zhao B F, Chen X J, et al. Research and prospect of terrestrial 3D laser scanning point cloud quality evaluation technology[J]. Geospatial Information, 2018, 16(8): 1-7, 9. 花向红,赵不钒,陈西江,等.地面三维激光扫描点 云质量评价技术研究与展望[J].地理空间信息, 2018, 16(8): 1-7, 9.
- $\circlength{\mbox{\sc l}}^2\circlength{\sc l}$ Junttila S, Vastaranta M, Liang X L, et al.

第48卷第1期/2021年1月/中国激光

研究论文

Measuring leaf water content with dual-wavelength intensity data from terrestrial laser scanners [J]. Remote Sensing, 2016, 9(1): 8-27.

- [3] Kang Z, Li J, Zhang L, et al. Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images [J]. Sensors, 2009, 9 (4): 2621-2646.
- [4] Tong Y, Xia M, Yang K C, et al. Target reflection feature extraction based on lidar intensity value [J]. Laser & Optoelectronics Progress, 2018, 55(10): 102802.
 童祎,夏珉,杨克成,等.基于激光雷达强度值的目
 - 标反射特征提取[J].激光与光电子学进展,2018, 55(10):102802.
- [5] Li Z, Jupp D L, Strahler A H, et al. Radiometric calibration of a dual-wavelength, full-waveform terrestrial lidar[J]. Sensors, 2016, 16(3): 313-336.
- [6] Zeng J J, Lu X S, Wang J, et al. Road extraction based on the echo information of LiDAR[J]. Science of Surveying and Mapping, 2011, 36(2): 142-143, 174.
 曾静静,卢秀山,王健,等.基于 LIDAR 回波信息

的道路提取[J]. 测绘科学, 2011, 36(2): 142-143, 174.

- [7] Huang X M, Sun Y, Liu H Q, et al. Resolving leaf area index of individual trees based on multi-return terrestrial laser point cloud data [J]. Journal of Remote Sensing, 2018, 22(6): 1042-1050. 黄星旻, 孙圆, 刘慧倩, 等. 多回波点云数据解算单 株木叶面积指数[J]. 遥感学报, 2018, 22(6): 1042-1050.
- [8] Cao L, She G H, Dai J S, et al. Status and prospects of the LiDAR-based forest biomass estimation [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(3): 163-169.
 曹林,佘光辉,代劲松,等.激光雷达技术估测森林 生物量的研究现状及展望[J].南京林业大学学报 (自然科学版), 2013, 37(3): 163-169.
- [9] Fang W, Huang X F, Zhang F, et al. Intensity correction of terrestrial laser scanning data by estimating laser transmission function [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 942-951.
- [10] Tan K, Cheng X J, Ding X L, et al. Intensity data correction for the distance effect in terrestrial laser scanners [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(1): 304-312.
- [11] Xia G F, Hu C M, Cao B Z, et al. Study on the influence of laser incident angle on the reflection intensity of the point cloud [J]. Laser Journal, 2016, 37(4): 11-13.

夏国芳, 胡春梅, 曹毕铮, 等. 激光入射角度对点云 反射强度的影响研究[J]. 激光杂志, 2016, 37(4): 11-13.

- [12] Carrea D, Abellan A, Humair F, et al. Correction of terrestrial LiDAR intensity channel using Oren-Nayar reflectance model: an application to lithological differentiation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113: 17-29.
- [13] Cheng X L, Cheng X J, Li Q, et al. Laser intensity correction of terrestrial 3D laser scanning based on sectional polynomial model [J]. Laser &. Optoelectronics Progress, 2017, 54(11): 112802.
 程小龙,程效军,李泉,等.基于分段多项式模型的地面三维激光扫描激光强度改正[J].激光与光电子学进展, 2017, 54(11): 112802.
- [14] Höfle B, Pfeifer N. Correction of laser scanning intensity data: data and model-driven approaches[J].
 ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433.
- [15] Calders K, Disney M I, Armston J, et al. Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2716-2724.
- [16] Pfeifer N, Dorninger P, Haring A, et al. Investigating terrestrial laser scanning intensity data: quality and functional relations [C]// International Conference on in Gruen, 2006.
- [17] Niu Y C. On the generalization of weierstrass approximation theorem [J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2010, 25(6): 614-616.
 牛英春.关于 Weierstrass 逼近定理的推广[J].内蒙 古民族大学学报(自然科学版), 2010, 25(6): 614-616.
- [18] Tan K, Cheng X J. Correction of incidence angle and distance effects on TLS intensity data based on reference targets[J]. Remote Sensing, 2016, 8(3): 251-270.
- [19] Kaasalainen S, Pyysalo U, Krooks A, et al. Absolute radiometric calibration of ALS intensity data: effects on accuracy and target classification[J]. Sensors, 2011, 11(11): 10586-10602.
- [20] Béland M, Baldocchi D D, Widlowski J L, et al. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR [J]. Agricultural and Forest Meteorology, 2014, 184: 82-97.
- [21] Lu X Y, Yun T, Xue L F, et al. Effective feature extraction and identification method based on tree

laser point cloud [J]. Chinese Journal of Lasers, 2019, 46(5): 0510002. 卢晓艺, 云挺, 薛联凤, 等. 基于树木激光点云的有 效特征 抽取 与识别方法 [J]. 中国激光, 2019, 46 (5): 0510002. [22] Junttila S, Sugano J, Vastaranta M, et al. Can leaf water content be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings [J]. Frontiers in Plant Science, 2018, 9: 299.

Separation of Single Wood Branches and Leaves Based on Corrected TLS Intensity Data

Sun Yuan^{1,2}, Lin Xiuyun¹, Xiong Jinxin^{3*}, Ren Guojing¹

¹ College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China;
² Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China;

³ NanjingLiuhe Pingshan Forest Farm Development Co., Ltd., Nanjing, Jiangsu 211500, China

Abstract

Objective Lidar scanning obtain point cloud date can not only directly measure the three-dimensional (3D) model of the object, but also reveal the intensity of the object. The laser intensity data reflects a variety of the characteristics of the target surface, which can be applied for registration of different measuring stations and filtering of point cloud data. It can also be used to extract and classify the target object by using the intensity data or combining the intensity data with the point cloud RGB data, so as to provide a basis information for feature extraction and leaf area calculation and biomass estimation. However, the influence factors such as the angle and distance will impact the laser intensity data of the same features. These deviations reduce the accuracy of point cloud registration, classification, and extraction, which is not conducive to the full use of point cloud information. Therefore, it is needed to establish a correction model to make the intensity data accurately reflects the feature information for rapid extraction.

Methods Based on lidar ranging equation, first, a pre experiment processing is designed to predict the influence of scanning background, illumination change, and leaf inclination on the intensity data of the research objects. Second, the polynomial models are analyzed to fit the intensity data corrected equation, and the standard value of each material is defined through indoor experiment. Through the model, the angle, which is not easy to measure, is converted into height. After that, the intensity correction models of seven different materials (ginkgo leaves front and back, ginkgo branch, white paper, soapberry leaves front and back, and soapberry branch), with six different distances (2 m, 3 m, 4 m, 5 m, 6 m, and 7 m) and six different heights (0 m, 0.5 m, 1 m, 1.5 m, 2 m, and 2.5 m) is going to be established. Third, the coordinate transformation method of outdoor standing trees (two species: ginkgo and soapberry) is designed, and the correction model is used to obtain the corrected data of the reflectance of branches and leaves for each species. Finally, a threshold method and a random forest method are selected for intensity classification, and the classification result is analyzed to achieve the purpose of using point cloud intensity data for ground feature classification.

Results and discussions 1) In the comprehensive analysis of various correction models, quadratic polynomial usually has the characteristics of simple calculation way and good simulation effect. For the seven kinds of materials, the data range after correction is less than 0.1, and the reflection intensity of each material is more stable than raw data, and is not affected by the distance and height. 2) Before correction, the peak value of reflected intensity of point cloud with leaves is smaller than that of yellow leaves and leaves off. The reflected intensity of leaves is less than that of branches. The reflected intensity of ginkgo ranges from 0.163 to 0.506 and that of soapberry ranges from 0.182 to 0.505. After correction, the range of intensity data for all materials decreases by an order of magnitude and fluctuates within a very small range of value. Among the correction results, the minimum range appears only 0.005 in the data of front of gingko leaves. While in the data of back of gingko leaves the range is also smaller, only 0.007. 3) For standing tree experiment, reflected intensity are smoother. The reflected intensity interval of ginkgo point clouds is 35, that is, the reflected intensity is 0.175 with a largest number of clouds. After

the correction of the leaf model and the branch model, the reflection intensity of the most standing point clouds is 0.035 and 0.065. For soapberry, the intensity interval is 18, and the reflected intensity is 0.09 with a largest number of clouds. After the correction of the leaf model and the branch model, the reflection intensity of the most standing point clouds are 0.05 and 0.065. 4) Different classification methods are used to separate leaves and branches from the corrected intensity of the two tree species, the threshold classification is more applicable. The highest accuracy of the threshold classification with row data is 37.406%. After correction, the classification accuracy of ginkgo leaf model could reach 75.780% which increases by 83%. With the addition of RGB information, the classification accuracy of the random forest model with corrected data is improved from 85.645% to 91.504% which increases by 6.8%. The accuracy of leaf model correction for both species are 91.504% and 84.323%, respectively.

Conclusions The calibration model method established in this paper can accurately correct the laser intensity data of the natural diffuse reflection target object. The selected natural standing-tree verifies the experiment successfully. Branches and leaves can be distinguished by the reflection intensity after calibration, which provides the possibility to further use point cloud data for branch and leaf separation and tree species identification.

Key words measurement; laser reflectivity; intensity correction model; ground three-dimensional laser scanning; single station scanning

OCIS codes 120.5700; 280.3640